In a game famous for it's prodigies, Magnus Carlsen of Norway stands out as something special. He was the third youngest chess grandmaster ever (age 13). Youngest #1 player ever (age 19). At 19 he also holds the third highest ELO score ever, putting him with the top chess players of all time (although wikipedia informs me that score is subject to inflation and thus debatable). Apparently you don't usually hit peak chess ability until 25 at the earliest, so being the best in the world at 19 promises for a long, dominating career.
Why do I bring him up? Because his childhood spent mastering chess included lots of time playing against computers. Carlsen is obviously one of those rare individuals that excel at some task far beyond the abilities of others. But could screen time have contributed to his almost unique skill? It's an answer we'll have to wait and watch for as new generations of chess players enter the world stage. Carlsen could be a fluke, or a precursor of what's to come.
The argument for software being a major cause of Carlsen goes like this: natural ability is not enough to be the best in the world. It's a requirement, but insufficient. Chess greats throughout history have put countless hours into studying chess: memorizing moves, playing games. This is true of any skill: you need to paint lots of pictures, write lots of words, hit lots of fastballs to make it big. Natural aptitude is a clay that gets formed into a specialized machine with repetitions and practice.
But not all practice is equal. Joe Mauer, 3 time A.L. batting champ, perfected his swing against a contraption his dad invented that would drop a ball at his eye level. With so little time between seeing the ball and the ball passing his waist, Joe had to develop an exceptionally quick swing. More generally, how often do strong high school sports programs exist for decades at a time? Partially elite performing schools attract transfers, but partially the talent in a program encourages everyone to perform at a greater level.
As a child, I played chess against my mother. For a long time she'd beat me every game. Eventually I surpassed her, winning most (but not all) of our matches. And then I stopped improving. It wasn't until years later that I started playing chess on Yahoo that I noticed myself improving again. I had found a challenge.
If you practice a competitive skill against players below your level, it's much harder to improve. Failures teach us. If you only see 50 mph fastballs, how do you learn to hit a 95 mph one? You're not developing the reaction time, the muscle memory, or the poise to do so. So it is with a chess prodigy. Eventually you surpass your parents, local children, then local adults. You can travel the world playing tournaments against the current generation of greats, but there's only so many such games you can get in. Often the chess prodigies will find a skilled player to mentor them, but the truly great will surpass even them.
Enter the computer, capable of calculating dozens of moves in advance. The computer can now play on par or better than any human in the world. In the coming years, that advantage will only grow. Any child with a computer now has access both to talented players across the world via the internet, and against their own, personal AI chess master. There is no need to arrange games against other greats, traveling far to play: from the comfort of your room you can pit yourself against the best.
As computers soar in their processing power, defeating all comers, they threaten to trivialize chess. But simultaneously they offer us the opportunity to reach previously unattainable levels of skill. And chess could just be the start. From math to literature, sports to debate, engineering to leadership computers may soon give us the opportunity to prove ourselves in challenges previously unknown. Carlsen is a wonderfully brilliant young man. He may also be a pioneer.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment